Seminar on Microorganism Control

PRESENTATION PREPARED BY
Raf Leyman – EMEA Regulatory Affairs Manager
Luis Zugno – Global Technical Director Leather
Elton Hurlow – EMEA Leather Division Manager
Luca Ramadori – EMEA Area Manager
Topics Covered

SECTION A:

Microorganisms and their Control in Leather Industry

1. Microorganism problems in leather production
2. Best practices in control of microorganisms
3. Importance of monitoring

SECTION B:

Government Regulations & Market Requirements

1. Government regulations on biocides
2. Risk assessment
3. Market restrictions on biocides

SECTION C:

Questions and General Discussion
SECTION A:

Microorganisms and their Control in Leather Industry

1. MICROORGANISM PROBLEMS IN LEATHER PRODUCTION
Classification of Living Things

- Early scientific classifications included the 5 “Kingdoms of life”:
 Animalia, Plantae, Fungi, Protista, Bacteria
- Individual organisms were classified and categorized according to strict hierarchical naming conventions, e.g.:
 Fungi, Basidiomycota, Basidiomycetes, Agaricales, Agaricaceae, Agaricus bisporus
 Animalia, Chordata, Mammalia, Primates, Hominidae, Homo Sapiens

Hierarchical Classification
 - Kingdom
 - Phylum
 - Class
 - Order
 - Family
 - Genus
 - Species

Binomial Nomenclature

Common Mushroom
Carl Linnaeus
(1707-1778)

- Improved understanding of cellular structure, brought 2 domains:
 - Prokaryotes (no organized nucleus or membrane bound organelles)
 - Eukaryotes (those with cells containing a nucleus)
There is a close relationship between fungi & animals.
Fungi are not plants.

Prokaryotes
Archaea and bacteria are genetically quite distinct.
Archaea have much in common with Eukaryotes.

Improved understanding at the genetic level, brought 3 Domains we use today.

Carl Woese 1990’s Phylogenetic Tree
Most living things are Microorganisms

Size Relationships: Important first line of distinction

<table>
<thead>
<tr>
<th>Organism</th>
<th>Diameter (μm)</th>
<th>Length (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>atoms</td>
<td>0.1</td>
<td>10^{-9}</td>
</tr>
<tr>
<td>molecules</td>
<td>1 - 10</td>
<td>10^{-6}</td>
</tr>
<tr>
<td>viruses</td>
<td>8 - 200</td>
<td></td>
</tr>
<tr>
<td>bacteria</td>
<td>0.5 - 2</td>
<td>10^{-6}</td>
</tr>
<tr>
<td>archaea</td>
<td>0.5 - 2</td>
<td></td>
</tr>
<tr>
<td>fungi / yeast</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>protozoa</td>
<td>10 - 1000</td>
<td></td>
</tr>
<tr>
<td>algae</td>
<td>>100</td>
<td></td>
</tr>
<tr>
<td>nematodes</td>
<td>1 mm</td>
<td>10^{-3}</td>
</tr>
<tr>
<td>flea</td>
<td>10 mm</td>
<td></td>
</tr>
<tr>
<td>chicken egg</td>
<td>100 mm</td>
<td></td>
</tr>
<tr>
<td>human</td>
<td>1.5 – 2 m</td>
<td>10^0</td>
</tr>
</tbody>
</table>

* Diameter of mycelium - fungi range widely in size from μm to m
Microorganism Damage in the Leather Industry

Main problematic microorganisms are: *Archaea, bacteria, fungi*
They cause many $millions damage in the leather industry worldwide each year

- Damage to hide and leather quality can occur
 - On the live animal
 - After slaughter and before arrival in the tannery
 - During leather processing
 - Storage and transport of leather
 - Storage and transport of leather articles

- Worker health
 - Mycotoxins, lost time & productivity, nuisance issues

Yeast are mono-cellular fungi
SECTION A:

Microorganisms and their Control in Leather Industry

2. BEST PRACTICES IN CONTROL OF MICROORGANISMS
Microorganisms of concern

Organisms that cause damage
- Archaea
- Bacteria
- Fungi

Chemical Substances used for Control
- Longer Term Control
- Short Term / Cleaning
- Bactericides
- Fungicides
- Sanitizers or Disinfectants

Red Heat
Archaea
bacillus
Fungi on wetblue
Two Main Tannery Problems within our Control

- **Attack during soaking**
 - Bacterial damage to the grain due to a lack of adequate controls

- **Attack on wet leathers**
 - Fungal growth on wetblue due to insufficient preservation
Bacterial Damage in Soak

Damage is due to bacterial **exo-enzyme*** attack and can result in:

- Exacerbation of existing damage
- Pin prick - follicular enlargement
- Loss of Grain or suede effect
- Loss of Enamel layer / sheen
- Increase in veininess
- Loss of hide substance
- Increased looseness
- Loss of physical strength properties
- Uneven chemical uptake
- Downgrading of hides or skins

*It is not the number of bacteria that are a problem in soaking, but the amount of bacterial enzymes.

Enzyme activity is a function of:
- Type and amount of enzyme
- Temperature & pH
- Time available for function
- Level of nutrients
- Presence or absence of inhibitors
Control during Soaking

General Considerations:

- Large numbers of bacteria are introduced from the hides or skins – dirt, manure, etc.
- “Fresh hides” are typically more contaminated than salt cured hides.
- It is NOT realistic to eliminate all bacteria during the soak
- For uniform results, we need to minimize the “exo-enzymes” released
- We do this by adding a suitable bactericide.
- Bactericides may be compared:
 - Chemistry
 - Mode of action
 - Speed of kill
 - Dosage or efficacy
 - Cost

If bacteria are not controlled you are adding variability to the process

Most common bactericides in soaking are based on dithiocarbamate chemistry
Bactericide Selection

Dithiocarbamates

• The most widely used bactericide for soaking worldwide
 – Economical application cost
 – Very effective at alkaline pH
 – Long lasting, slow kill – long $T_{1/2}$
 – Possible unhairing issues at higher concentration (>0.2%)
 – Possible lachrymation issues with some types of carbamates
 – Listed by IPPC as “Best Available Technique” for the leather industry
 – Available as K or Na salts

Potassium Dimethyl-dithiocarbamate
Bactericide Selection

Other:

- Commodity Oxidizers: Chlorite, Hypochlorite; Bromine; Ozone; Peracetic acid
 - Competing action as they react with all organics
 - Excess dosage can cause problems with hair removal
 - Peracetic has strong smell
- Isothiazolinones (mix)
 - Good bactericides, Effective over a broad pH range
 - Broad spectrum, rapid kill
 - Moderate half life ($T_{1/2}$)
 - Cost effective for shorter soak
- Quaternary Ammonium Compounds:
 - These are good bactericides, but mainly used as surface sanitizers - not very effective in soak
Preservation of wet leather

Fungi
Fungi Growth Cycle

- Mature fungi produce spores which are dispersed in the air.
- Spores can remain dormant for years.
- Germination is triggered if sufficient moisture and nutrients are available.
- Growth structures are in the form of thread-like cells called hypha.
- Hyphae release enzymes that degrade surrounding nutrients which are absorbed.
- The mass of intertwining hyphae network is called mycelium, which when visible is sometimes called mould.
- To reproduce, fungi form fruiting bodies that release spores.

By the time we see mould growth on leather, the original spore has multiplied to represent thousands of individual fungal organisms.
Typical Leather molds

Trichoderma sp.

Penicillium sp.

Aspergillus sp.
Problems caused by fungi

• Staining of the grain - can be from pigment in fungal spores but usually from physico-chemical changes in area of fungal growth
• Uneven dyeing or levelness problems
• Downgrading
• Time lost - Rework
• Opportunity lost - utilize molded stock in darker colours or different grades.
• Upset customers
• Worker health problems – some spores are toxic (mycotoxins)

A definition of tanning: “To prevent microbial enzyme attack”.

Q: So why do we get fungal growth on tanned leather?
A: The main nutrients for fungal growth are fatty materials & sugars
Fungicide chemistry

There are not many active substances that are of significant commercial importance in the leather industry:

- **TCMTB** - 2-(Thiocyanomethylthio)benzothiazole
- **OIT** - 2-n-octyl isothiazolin-3-one (ITZ / OITZ)
- **CHED** - S-Hexyl-S’-Chloromethyl-cyanodithiocarbimate
- **PCMC** - p-Chloro-metacresol (CMK)
- **OPP** - ortho-Phenylphenol

Other actives encountered include:

- **MCABIA** - Carbendazim
- **DIMTS** - Diiodomethyl-p-Tolylsulfone
- **IPBC** – Iodo-propenyl butyl carbamate
- Sulfones, pyrithiones, etc.

- **Multiple active blends**: TCMTB + OIT; TCMTB + OIT + CHED; OPP + PCMC, etc.

NOTE: Most of these active substances, except for CHED, have been around for a long time (>30 years).
Fungicide Active Substances for Leather

- TCMTB
- OIT (ITZ)
- PCMC (CMK)
- OPP
- CHED
Critical Success Factors

Apply a good Product

• Active Substance
• Concentration
• Blends & Synergy
• Formulation stability
• Emulsion size and stability
• Aqueous dispersion

Knowledge in Application

• Review of process / recipe
• Chemical Compatibility
• Point of application
• Dosage (s)
• Nutrient levels / fats

Problem Solving Skills

• Troubleshooting
• Storage, Handling
• Spectrum, MIC
• Environmental checks
• In a dynamic environment problems can and will arise

Measure Performance

• Confirmed uptake
• Amount and uniformity
• Present in active form
• Compatible process
• Challenge test - Tropical chamber, Petri dish
SECTION A:

Microorganisms and their Control in Leather Industry

3. IMPORTANCE OF MONITORING
Both the tannery and the microorganism world are dynamic environments

Every tannery is different, and raw materials, process recipes, environmental conditions, etc. are constantly changing

Monitoring is necessary to ensure performance

Yes, you added the microbicide... but how do you know it is working?

If you can’t measure, how can you manage?

“What’s measured improves!”
Monitoring Bacteria in Soak

Plating Techniques

ATP Metabolic Activity

Petrifilm®

Bucheck / Dipslides
ATP* Bioluminescence Assay

- Measurement of metabolic activity
- Directly correlated to all living microorganisms in a given system
- Monitor trends in real time
- Results are immediate
- Results are “actionable”

ATP TEST EQUIPMENT & REAGENTS

*ATP = Adenosine triphosphate
Setting up a Fungicide Program

Process & Environment Review:

- Understanding of raw materials, process recipes, and environmental conditions.
- Check to ensure compatible chemistries
 - Strong oxidizing agents
 - Reducing agents
 - Other potential interferences

Performance Requirements:

- Define post tanning operations and preservation conditions
- Ensure that dosage and uptake are aligned with preservation requirements
Uptake of Fungicide

Analytical Measurement of Active Substance:

- Solvent extraction → detection using HPLC or TLC
 PCI = Process Compatibility Index (TCMTB)
- **Quantity**: Critical minimum amount is required for performance
- **Uniformity**: Uptake and distribution

Reference: IUC 29 / EN ISO 13365
Challenge Testing

Environmental Chamber Test: (ASTM D7584-10)
- Controlled temperature and humidity
- Populated with various fungal species
- Exposure period – e.g. 4 to 8 weeks
- Monitor regularly for mould growth

Agar Plate Challenge Test:
- Controlled temperature and humidity
- Inoculated with various fungal species
- Monitor for growth
Comment on Resistance

NO!

- There are significant technical differences between industrial biocides and antibiotics.
- Forty years of leather industry experience has not provided one confirmed case of genetic resistance.
- Failures of fungicide programs are often blamed on resistance, but scientific evaluation indicates root cause problems are either:
 1. Insufficient fungicide addition
 2. Poor uptake and distribution
 3. Incompatibilities in processing